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direct method for an electrostatic model is to make predic-
tion of charge density based on a linearized approximation,We have developed an electrostatic macro-scale implicit particle

simulation code which enables us to simulate low-frequency plasma which depends only on particle positions, and to calculate
wave phenomena with large spatial scale length. Specifically, the the electrostatic potential at the next time step. In addition,
Poisson equation with the implicit susceptibility term is accurately an implicit equation of motion for each particle, whichsolved in our scheme with the ‘‘strict differencing’’ and ‘‘the consis-

is numerically stable against the high-frequency plasmatent filtering.’’ Linear properties of the simulation scheme, such as
oscillation, is solved along with the Poisson equation whichthe linear stability and the dispersion relation, are examined. We

have also applied our simulation code to the excitation and nonlin- is modified with the implicit susceptibility term.
ear saturation of the ion temperature gradient (ITG) drift instability In the macro-scale particle simulation scheme [5], which
in a system with a shearless slab geometry. The linear properties

is categorized in the direct implicit method, both the equa-of the excited ITG mode are compared with the theoretical prediction
tion of motion and the Maxwell equation are solved byto find a good agreement. Q 1996 Academic Press, Inc.

a first-order implicit algorithm. For electrostatic modes
propagating along the magnetic field, however, no signifi-

1. INTRODUCTION cant peak is recognizable in the power spectrum of the ion
acoustic branch (see Fig. 6 in Ref. [5]). Therefore, for

In the last three decades, the particle simulation method practical use an electrostatic macro-scale particle simula-
has been employed for studying nonlinear plasma waves tion scheme with low-noise level and high-accuracy is re-
with kinetic effects such as the Landau and cyclotron damp- quired to develop.
ings. While various nonlinear plasma phenomena have In order to improve the accuracy in calculation of the
been clarified by the conventional particle simulation with electrostatic field, some important methods have been pro-
explicit time integration, the applicability is limited to high- posed by the Livermore group [3, 6], that is, ‘‘the consistent
frequency plasma waves with short wavelengths. This is filtering’’ and ‘‘the strict differencing.’’ The consistent fil-
because the simulation time step Dt should be less than tering method has been applied to the electrostatic gravita-
g 21

p and the grid spacing has to be comparable to the Debye tional instability in the two-dimensional system [4]. Since
length [1, 2]. Thus, it is difficult to study kinetic waves with the strict differencing scheme includes a difficulty in imple-
MHD space and time scales by means of the conventional menting a two- or three- dimensional scheme, no applica-
particle simulation method. In fusion and space plasmas, tion with both the strict differencing and the consistent
however, one notices the importance of kinetic effects on filtering has been made in multi-dimensions. Highly accu-
MHD and transport scale phenomena, such as the excita- rate solution of the implicit Poisson equation is, however,
tion of MHD waves by high energy (alpha) particles, anom- needed not only in ensuring simulation results, but also in
alous heat transport caused by drift waves, triggering of guaranteeing the numerical stability of a simulation code.
collisionless reconnection and so on. For the purpose of This is because the stability analysis of the code is practical
obtaining a feasible tool that can be useful for the study and useful only when the solution of the Poisson equation
of the nonlinear plasma dynamics with large space and is obtained accurately.
time scales, many efforts have been made to overcome the In this paper, we present an electrostatic version of the
technical restriction pertinent to the conventional particle revised macro-scale particle simulation scheme and exam-
simulation. The direct implicit particle simulation tech- ine the validity of our method both analytically and numer-
nique has been developed and improved by continuous ically. A process of satisfying the implicit Poisson equation
efforts over the last decade [1–5]. In the direct method, is necessary in the electromagnetic particle simulation in
particle data is directly used in the prediction of electro- order to satisfy the charge continuity law. Thus, we wish

to start with inventing an elaborate method of solving themagnetic fields at the next time step. The essence of the
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implicit Poisson equation with high accuracy in this paper. with
The numerical algorithm will be described in Section 2. In

x̃ n11
i 5 x n

i 1 Dtvn
i

(5)
Section 3, we will make stability analysis of our simulation
scheme by means of the procedure given by Langdon [7],
taking into account all the effects of the finite time step, 1 (1 2 a)

qiDt 2

2mi
O

j
DxS(Xj 2 x n1a

i )En
j .

the finite grid spacing, the alias modes, the shape function
of particles, and the Maxwellian velocity distribution func-

Here,tion. Our numerical technique for implementing the strict
differencing in multi-dimensions is given in Section 4. Sim-

rj(x̃ n11
i ) 5 O

i
qiS(Xj 2 x̃ n11

i ) (6)
ulation results will be shown in Section 5, where the ion
temperature gradient (ITG) drift instability will be exam-

andined by its two-dimensional version, including the effect
of the polarization drift [8]. Summary and discussion will
be given in the last section. drj(x̃ n11

i ) 5 2= ? O
i

a
q2

i Dt 2

2mi (7)

3 S(Xj 2 x̃ n11
i ) O

l
DxS(Xl 2 x̃ n11

i )(2=fn11
l ).2. SIMULATION ALGORITHM

2.1. Electrostatic Algorithm in 1D System
After solving Eq. (4), one can calculate the particle position

At first let us consider an unmagnetized electrostatic and velocity at the (n 1 1)th time step. Conventionally,
plasma in a one-dimensional system. The equation of mo- the implicit term in Eq. (7), which consists of spatial convo-
tion for each particle i with a shape function S(x) is given lution, is further simplified [1, 3, 5] as
by [5]

drj(x̃ n11
i ) P 2 = ? O

i
a

q2
i Dt 2

2mi
S(Xj 2 x̃ n11

i )(2=fn11
j ). (8)

x n11
i 5 x n

i 1 Dtvn
i 1

qiDt2

2mi
O

j
DxS(Xj 2 x n1a

i )En1a
j , (1)

Note that the second summation of l in Eq. (7) is
replaced by 2=fn11

j . This simplification (simplified differ-
encing) reduces Eq. (4) to a tri- or penta-diagonal matrixvn11

i 5 vn
i 1

qiDt
mi

O
j

DxS(Xj 2 x n1a
i )En1a

j , (2)
equation of fn11

j , if S(x) is the nearest-grid-point or
linear-interpolation function. In such a case, we can easily
solve Eq. (4) by means of an adequate matrix equa-

where x n
i and vn

i are a particle position and velocity at the tion solver.
nth time step; qi and mi denote the charge and mass of the The present study, however, has disclosed that the ap-
particle; Xj means the position of a grid point and the proximation in Eq. (8) results in a serious numerical error
suffix j indicates the grid number. The time-decentering in association with the inconsistent filtering. Thus, Eq. (7)
parameter a is in the range of 0.5 # a # 1. When a 5 should be employed without any approximation and Eq.
0.5, Eqs. (1) and (2) are time-centered. As is given in the (4) should be solved iteratively. Numerical accuracy of our
above equations, the electric field E n1a, which is given by method will be examined in Section 5.1.
the linear interpolation of En1a 5 aE n11 1 (1 2 a)En, acts
on the particle at x 5 x n1a

i . Here, x n1a
i is provided by

x n1a
i 5 x n

i 1 aDtvn
i . 2.2. Electrostatic Algorithm in 2D System

As is described in Eqs. (1) and (2), particles are acceler-
In a two-dimensional case with an external magneticated by En and En11, while En11 is unknown at the nth time

field B, particle velocity perpendicular to the magnetic fieldstep. In the implicit particle algorithm, thus, the Poisson
is given by the E 3 B drift both for the electrons and ions.equation is not solved directly, because the particle posi-
Only parallel velocity vn11

ii is calculated from the equationtion xn11
i , hence, the charge density rj(x n11

i ) has not been
of motion asobtained at the nth time step. Therefore, the Poisson equa-

tion at the (n 1 1)th time step is approximated by the x n11
i 5 x n

i 1 Dtvn
ii

Taylor expansion at x̃ n11
i ,

1 O
j,k

DxDyS(Xjk 2 x n1a
i ) (9)

2=2fn11
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i )/«0 (3)
3 FDt

B2 En1a
jk 3 B 1
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En1a

i jk G,
P rj(x̃ n11

i )/«0 1 drj(x̃ n11
i )/«0 (4)
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perturbed particle position x n11
(1) is expressed by the time

vn11
ii 5 vn

ii 1
qiDt
mi

O
j,k

DxDyS(Xjk 2 x n1a
i )En1a

i jk , (10) integration of acceleration in the past, such as

where x n1a
i 5 x n

i 1 aDtv n
ii . The Poisson equation is modi-

x n11
(1) 5

qDt 2

m O
s51
HSs 2

1
2D DxE[ae2igDt 1 (1 2 a)]

(16)
fied by introducing the polarization term [8]:

e2ig(n112s)Dt O
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eikXjS(Xj 2 x n112s1a
(0) )J,2=2fn11

jk 2 =' ?
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«0B2 ='fn11
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where s is a positive integer. The first term in the squareThe above equation is also expanded at x̃ n11
i , where

bracket at s 5 1 corresponds to the implicit acceleration
by E n11

j . Since the particle feels the electric field on itsx̃ n11
i 5 x n

i 1 Dtv n
ii

unperturbed trajectory in the linear regime, the argument
1 O

j,k
DxDyS(Xjk 2 x n1a

i )(1 2 a) (12) of the shape function becomes Xj 2 x n112s1a
(0) . Taking aver-

age over all particles and operating the Fourier transforma-
tion, we obtain the dipole density P(k, n 1 1), which is

3 FDt
B2 En

jk 3 B 1
qiDt 2

2mi
E n

i jkG. separated into two parts:

P(k, n 1 1) 5 2i[Q(k) 1 R(k)] f(k)e2ig(n11)Dt, (17)Then, we obtain the implicit Poisson equation in the two-
dimensional system,

where

2=2fn11
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min0

«0B2 ='fn11
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pDt 2kE(k)S(k)
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(12a)eigDte2[k(12a)Dt]2v2
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qidxiS(Xjk 2 x̃ n11

i ). (14)
R(k)5 Asg2

pDt 2kE(k)S(k)ae2[k(12a)Dt]2v2
t /2. (19)

The displacement vector dxi for each particle is given by In the above equations, we have assumed the Maxwel-
lian velocity distribution function, f0(v) 5 (1/Ï2fvt)

dxi 5 O
l,m

DxDyS(Xlm 2 x̃ n11
i )a

(15)
exp(2v2/2v2

t ). Moreover, kE(k) means the finite difference
gradient operator for calculating the electric field. It is
worthwhile to note that the implicit term R(k) represents

3 FDt
2=fn11

lm 3 B
B2 2

qiDt 2

2mi
=if

n11
lm G. a plasma response to the electric field En11, and that diver-

gence of 2P(k, n 1 1) gives the charge density rn11/«0.
Substituting the divergence of Eq. (17) into the Fourier

Solving Eqs. (9) and (10) with (13), we obtain the particle transformation of Eq. (4), we arrive at the dispersion rela-
positions and velocities at the (n 1 1)th time step. tion of the implicit particle simulation plasma,

3. LINEAR ANALYSIS OF NUMERICAL STABILITY
1 1

1
K 2(k) Op S(kp)[kpQ(kp) 1 kdr(k)R(kp)] 5 0, (20)

In this section, we will investigate the numerical stability
of our simulation scheme. According to the linear analysis
given by Langdon [7], we will derive a dispersion relation where kdr(k) is the divergence operator for the implicit

term in Eq. (7) and K 2(k) means the Laplacian in the finitein the model plasma for the one-dimensional case. Here,
electron motions with respect to the background immobile difference form. The index p shows the alias mode which

arises in the calculation of the charge density defined onions are considered, because we are interested in stability
against the plasma oscillation. Suppose a particle with an the spatial grids. Then, kp is given by kp 5 k 2 p(2f/Dx).

If the alias modes can be ignored, and if kdr(k) 5 k, weunperturbed trajectory of x n11
(0) 5 x 0

(0) 1 (n 1 1)Dtv(0) is ac-
celerated by a sinusoidal electric field EeikXj2ig(n11)Dt. The can simplify the dispersion relation of Eq. (20) as
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FIG. 1. Numerical solutions of the dispersion relation obtained from the linear analysis of the simulation scheme for the cases of (a) a 5 0.5
without the alias modes, (b) a 5 0.5, and (c) a 5 0.55 with the alias modes. Solid and dashed contour lines indicate positive and negative values,
respectively. For the real part of the solutions (left), the contour interval of gr/gp is 0.1 in all cases of (a)–(c). For the imaginary part (right), the
contour levels in case (a) are logarithmically defined as 210210, 21029, ..., 21024; in cases (b) and (c), the contour interval of gi/gp is equal to 4 3 1023.

contours of gr and gi are plotted in Dt 2 k plane; gr1 1
g 2

pDt 2

K 2(k)
kkE(k)S2(k) decreases as Dt and k increase, respectively, because of

the implicit time-difference and the finite grid effect. The
3 O

s51
Ss 2

1
2D [ae2igDt 1 (1 2 a)]eisgDte2[k(s2a)Dt]2v2

t /2 5 0. minimum frequency in the Dt 2 k plane is gr 5 0.147gp .
More importantly, gi has a small negative value for

(21) gpDt @ 1. Our implicit scheme is, thus, numerically stable,
when the alias modes are ignored.

In remainder of this section, we numerically solve Eqs. Secondly, we solve Eq. (20) under the same numerical
(20) and (21) in a frequency domain of the plasma oscilla- parameters and operators as in the case of Fig. 1(a). Here,
tion and examine the numerical stability of our simula-

the aliasing effect (p ? 0) is fully taken into account. The
tion method.

numerical result is given in Fig. 1(b). One can see that theFirst, let us consider a case without the aliasing effect
decrement of gr against k is larger than that of the case(p 5 0), calculating real and imaginary parts of g (i.e., gr shown in Fig. 1(a). Undesirably, there are unstable solu-and gi) in Eq. (21) by the Newton method. In our actual
tions (positive gi) due to the aliasing effect in a wide rangesimulation code, we have used the following operators:
of the wavenumber space. The numerical instability caused
by the alias modes can be stabilized, if we use a much

K 2(k) 5 k2 Fsin(kDx/2)
kDx/2 G2

(22) smaller grid spacing such as Dx p lD . In order to realize
a particle simulation with an MHD spatial scale, however,
it is necessary to take a large grid spacing (Dx @ lD).

kE(k) 5 k Fsin(kDx)
kDx G (23) Although the employment of a higher order (much

smoother) shape function is a candidate to suppress the
kdr(k) 5 k. (24) numerical instability, it makes the simulation code much

more complicated. Thus, we will introduce a stabilizingWe take the divergence of Eq. (7) in the wavenumber
effect of the time-decentered scheme, increasing the decen-space so that Eq. (24) is satisfied. Hence, Eq. (21) is valid
tering parameter a.when the alias modes are dismissed. The shape function

We have plotted solutions of Eq. (20) with a 5 0.55 inwhich we have employed is the linear-interpolation
Fig. 1(c). While gr is quite similar to the case in Fig. 1(b), gifunction,
in Dt 2 k space is largely modified by the time-decentering
effect. The unstable solution, gi . 0, is confined in a large

S(k) 5 Fsin(kDx/2)
kDx/2 G2

. (25) wavenumber region, kDx . 0.3f. No unstable solution is
found in a small wavenumber region, kDx , 0.3f, even in
the case of gpDt @ 1. If we further introduce an adequateNumerical solutions of Eq. (21) with parameters of

Dx 5 12.5flD and a 5 0.5 are shown in Fig. 1a, where numerical filter which can damp the large wavenumber
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FIG. 1—Continued

mode of kDx . 0.3f, we can realize a stable simulation ture charge density r(x n11
i ) and f n11 satisfy the Poisson

equation, that is, Eq. (3). Before going into a real simula-code against the large time step (gpDt @ 1) and the large
grid spacing (Dx @ lD). Therefore, we will use a numerical tion, therefore, we must examine how the numerical error

due to the implicit term dr arises and how large it is.filter defined by [1]
Numerical error arising from treatment of the implicit term
has been investigated by the Livermore group [3, 6]. TheyW(k) 5 exp[2(k/kc)Nf]. (26)
found that the consistent filtering and the strict differencing
largely improved the solution of the implicit Poisson equa-Here, the cutoff wavenumber of kc 5 2f/8Dx is sufficient

for our purpose. The integer Nf , which is set to be 4 or tion. Hence, our subject is how to implement the multi-
dimensional simulation scheme with strict treatment of the8 in the later simulations, controls the sharpness of the

numerical filter. In addition, the numerical filter should be implicit term.
In some of previous works [3, 5, 6], the implicit term wasemployed both for r(x̃ n11

i ) and dr(x̃ n11
i ) consistently [3,

5]. Otherwise, usage of the numerical filter will degrade moved to the left-hand side; hence, Eq. (4) was rewritten in
a matrix form,the accuracy of the electrostatic field calculation.

4. STRICT TREATMENT OF THE IMPLICIT TERM Mjkf n11
k 5 rj (x̃ n11

i ). (27)

In obtaining the future electrostatic potential fn11 in an
implicit particle simulation, the implicit Poisson equation When Eq. (27) is solved in real space, it is difficult to

operate the numerical filter on the implicit term and tosuch as Eq. (4) is employed. After having solved the im-
plicit equation, particles are pushed by the electric field employ the strict differencing, especially in multi-dimen-

sions. This is because the filter should be transformed intoE n11 (52=f n11). Hence, it is not guaranteed that the fu-
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real space in terms of a convolution operator which will, implicit term, is needed for accelerating the convergence
of solution with long wave length. Moreover, Eq. (31) cangenerally, lead to a large number of non-zero elements of

Mj k . In order to use the consistent filtering, Barnes et al. be easily written in a matrix form for c (m11)
j and, then, is

solved by a matrix solver such as the conjugate-gradient[4] solved the implicit Poisson’s equation in wavenumber
space, while simplified differencing was employed. method. Starting from the initial guess of f (0)

l 5 0, we have
succeeded in finding the solution of Eq. (4), although theIn our simulation scheme, Eq. (4) is solved iteratively

by means of the Newton–Raphson method, leaving the convergence of the iteration in Eqs. (31) and (32) may
not be guaranteed for all spatial distributions of particles.implicit term on the right-hand side. Thus, we can intro-

duce strict differencing in the multi-dimensional system. Actually, in two-dimensional simulations shown in Section
5.3, we set b 5 0.5. Then the solution is obtained afterWe rewrite Eq. (4) as
about 50 steps of iteration with the residual less than 1028.
Through one-dimensional simulation runs in the next sec-

2=2fj 5 rj(x̃i)/«0 2
aDt2

2
W 2 p = ? Nj lEl (28) tion, we examine the accuracy of our code with both the

strict differencing and the consistent filtering.
with

5. SIMULATION RESULTS

Njl 5 O
l
O

i

q2
i

mi
S(Xj 2 x̃i)DxS(Xl 2 x̃i) (29) 5.1. Numerical Accuracy in Electrostatic

Field Calculation

and Giving an initial density perturbation of dn Y sin(kx)
for both the elecrons and ions, we have performed several

El 5 2=fl , (30) one-dimensional simulations for varying wavenumbers
over a hundred time steps with the periodic boundary

where the superscript n 1 1 is neglected and W2 p denotes condition. Parameters used in the simulations are as fol-
the filtering operation. For the linear-interpolation function lows: a 5 0.55, Lx 5 128Dx, Dx 5 12.5flD , Dt 5 10g 21

p ,
S(x), the matrix Njl couples El at nine grid points in two mi 5 100me , and Ti 5 0.01Te , where Lx means the system
dimensions and couples El at 27 grid points in three dimen- length; mi , me , Ti , and Te denote the masses and the tem-
sions. It is important to note that the number of elements peratures of the ions and electrons. We have employed
in Njl is not changed by the filtering, while the number of 1024 particles per grid spacing both for the electrons and
elements in Mjk in Eq. (27) is largely increased. Further- the ions. The averaged value of d, which is defined as
more, Njl is fixed through the iteration steps; in other words,
the particle data is referred to only at (m) 5 0. Then, we

d ;
«0K2(k)fn11(k)

rn11(k)
, (34)solve Eq. (28) iteratively adding a dummy term on both

sides of the equation, that is,

over a hundred time steps is plotted as a function of the
wavenumber in Fig. 2, where the white and black circles,2=2c (m11)

j 1
aDt2

2
= ? nj(2=c (m11)

j )
respectively, represent the results for the cases with strict
and simplified implicit terms. The dashed line indicates the

5 rj(x̃i)/«0 2
aDt2

2
W 2 p = ? NjlE

(m)
l (31) analytical estimation with the simplified differencing and

the inconsistent filtering given by

1
aDt2

2
= ? nj(2 =f(m)

j )

d P
1

1 1 (a/2)g 2
pDt2(1 2 S2(k)W2(k))

. (35)

and

In the case of the strict implicit term, the values of d are
f (m11)

j 5 bc (m11)
j 1 (1 2 b)f (m)

j . (32) irrespective of k and nearly equal to 1. The numerical error
is less than 5%. Employing the strict expression of the

Here, (m) means the iteration step, and nj is given by implicit term in Eq. (7), therefore, we can perform a simula-
tion run with high numerical accuracy for the potential
calculation. In the simplified case, however, the value ofnj 5 W 2 p O

i

q2
i

mi
S(Xj 2 x̃i). (33)

d monotonically decreases as k increases, as the analytical
prediction, i.e., Eq. (35), gives. The large difference be-
tween «0K2(k)fn11(k) and rn11(k) arises for a much smallerThe dummy term, which is the same with the simplified
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power spectra of the artificial modes are independent of
the ion to electron mass ratio. The artificial modes, thus,
will not affect the low-frequency wave dynamics where the
dynamics of ions plays the leading role.

5.3. Simulation of the ITG Drift Instability

We have performed two-dimensional simulations of the
ITG drift instability in a system with a shearless slab geom-
etry for several different time steps. The simulation system
is set in the x-y plane. External magnetic field in the
y-z plane is imposed on the system with an inclination
angle of u 5 tan21(ki/k'), where u 5 0.01 in the present
simulations. The electrostatic potential is fixed to zero at
x 5 0 and Lx , while the periodic boundary condition is

FIG. 2. Plots of the electrostatic fields obtained from the actual simu- employed in the y direction. The ion temperature profile
lation runs with the strict (white circles) and simplified (black circles) in the x direction is given by
implicit terms. Dashed line shows the theoretical estimation given by Eq.
(35), where both the simplification of the implicit term and the inconsistent
filtering are employed.

Ti(x) 5 Ti0kTLx
exp(2kTx)

1 2 exp(2kTLx)
, (36)

wavenumber regime than the cutoff wavenumber kc (52f/ where kT 5 1.6 3 1023l21
D and Ti0 5 Te . Other parameters

8Dx); for example, the error reaches 60% of rn11(k) at are set as follows: the system length, Lx 5 Ly 5 16D; the
k 5 6f/64Dx. grid spacing, D 5 Dx 5 Dy; the ion to electron mass ratio,

mi/me 5 1836; and number of particles per unit cell,
5.2. The Dispersion Relation of Electrostatic Waves ND 5 1024. The magnetic field intensity is determined so

that Ve 5 gp , where Ve is the electron cyclotron frequency.Employing the strict implicit term given in Eq. (7), we
In the two-dimensional case with the inclined magnetichave performed the simulation runs for the same parame-
field and the polarization term, the critical time step Dtc forters with those in the last subsection. In the present simula-
the explicit time integration is governed by the electrostatictions, 8192 particles per grid spacing are used. We have
shear Alfvén frequency [8] gH 5 (ki/k')(me/mi)1/2Ve; i.e.,obtained the dispersion relation of the electrostatic waves
Dtc 5 g21

H 5 4285g21
p for the present parameters. Thus, weafter having run the simulation code over 8192 time steps.

will show that our implicit scheme is numerically stableThroughout the simulation run, the total energy in the
for the time step Dt larger than Dtc , while the explicitsimulation system is conserved within an error of 1%.
scheme is unstable in the case of Dt . Dtc . We have carriedThe power spectra of the electrostatic potential in the
out five simulation runs, changing the time step (Dt 5g 2 k plane are plotted in Fig. 3. The dashed curve repre-

sents the dispersion relation of the ion acoustic wave, that
is, g 5 kCs (Cs 5 ÏTe/mi). In low frequency regime
(g P 1024–1023gp), one can find the significant peaks which
are coincident with the theoretical dispersion relation of
the ion acoustic mode. The plasma oscillation, of which
the frequency (gpm Q 0.27gp) is modulated by the implicit
time-difference, can also be detected in the power spectra.
The observed frequencies for the above two modes are in
good agreement with the theoretical values.

In the power spectra, we have found two artificial modes.
One of them, which may be generated by the numerical
error in Eq. (4), is seen at the Nyquist frequency gN 5
f/Dt. The other mode in an intermediate frequency range
of g p 1022–1021gp would be caused by the mode coupling
of gpm and gN . This is because the frequency spectra with
band width of 0.06gp are centered around gN 2 gpm and the FIG. 3. Power spectra of the electrostatic potential obtained from
band width is similar to that of the frequency-modulated the one-dimensional simulation. Dashed curve represents the theoretical

dispersion relation of the ion acoustic mode.plasma oscillation. Moreover, we have confirmed that the
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As is seen in Table I, the growth rate fluctuates in the
large Dt regime owing to the numerical error. Nonetheless,
all sautration levels of the field energy for the five cases
are nearly equal to 1027nTe. Therefore, our implicit scheme
is said to be stable even if Dt . Dtc , and is applicable
to a real low frequency phenomenon such as the ITG
drift instability.

6. SUMMARY AND DISCUSSION

In the present study, we have developed an electrostatic
version of the macro-scale implicit particle simulation code

FIG. 4. Time evolution of the electric field energy for the two-dimen-
(MACS-ES) and have examined its characteristics ana-sional simulation of the ITG drift instability. In this case, the simulation
lytically and numerically. The results are summarized astime step is set to be 1 3 104g21

p . The growth rate of the instability
obtained by the simulation is consistent with the theoretical value based follows:
on the fluid approximation.

1. We have derived the linear dispersion relation of
our new implicit particle simulation scheme and have veri-
fied its stability by solving the dispersion relation numeri-2.5 3 103–3 3 104g21

p ). In the following simulations, only
cally. The linear analysis has shown that the unstablethe ITG mode with wavelength of Ly can be excited, be-
solutions due to the aliasing effect exist in the wide wave-cause shorter wavelength modes (k $ kc 5 2f/8D) are
number regime for the time-centered difference scheme.artificially damped by the numerical filter for stabilization
In order to suppress the numerical instability, we haveof the scheme.
introduced the stabilizing effect of the time-decenteredTime evolution of the electric field energy is shown in
scheme and have employed the numerical filter leading toFig. 4. Here, D 5 62.5flD and Dt 5 1 3 104g21

p . The field
the damping of large wavenumber modes.energy exponentially increases with the growth rate of

2. The numerical method for solving the implicit Pois-4.0 3 1027gp as the ITG drift instability is generated. Using
son’s equation has been improved in this study. Both ofthe maximum entropy method, we have calculated the real
the strict differencing and the consistent filtering are em-frequency to obtain gr 5 6 3 1027gp . The frequency and
ployed in one- and two-dimensional systems. The accuracygrowth rate obtained from the simulation are in fairly good
of the electrostatic field calculation, thus, becomes muchagreement with the theoretical estimate given by the well-
improved. The improvement is verified by the actual simu-known dispersion relation under the fluid approximation
lations.[9],

3. The dispersion relations of electrostatic waves have
been examined by means of the one-dimensional simula-

g 5 S1
2

1 i
Ï3
2 D Sk 2

i C2
s

2
g*TiD1/3

. (37) tion. The power spectra in the g-k space have shown good
coincidence with the theoretical dispersion relation. Espe-
cially, the ion acoustic branch is clearly identified in theFor the present parameters, g 5 3.5 3 1027 1 i6.0 3
g-k diagram.1027gp . The instability saturates at t 5 2.2 3 107g21

p . The
saturation level of the field energy is about 1027nTe . In 4. Based on the scheme developed in one-dimensional
Table I, the growth rates of the instability are summarized case, we have extended our code to the two-dimensional
for the cases of Dt 5 0.25, 0.5, 1.0, 2.0, and 3.0 3 104g21

p . geometry with the external magnetic field. In the two-
dimensional model, the effect of the polarization drift is
taken into account. Giving the ion temperature gradient

TABLE I perpendicular to the magnetic field, we have carried out
simulations of the ITG drift instability. The obtained fre-Growth Rates of the ITG Drift Instability for Different Time Steps
quency and growth rate of the ITG mode are in reasonably

Time step (g21
p ) Growth rate (gp) good agreement with theoretically predicted ones. The

growth rate of the instability, however, is found to fluctuate
2.5 3 103 4.9 3 1027

in a certain range when the time step Dt is changed as
5.0 3 103 4.9 3 1027

shown in Table I.1.0 3 104 4.0 3 1027

2.0 3 104 2.8 3 1027

For stabilization of the alias modes, the high-frequency3.0 3 104 3.9 3 1027

waves, such as the plasma oscillation in the one-dimen-
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authors (T.H.W.) is grateful to Dr. H. Naitou for fruitful discussions.sional case and the electrostatic shear Alfvén wave in the
This work is partially supported by Grants-in-Aid of the Ministry oftwo-dimensional case, are artificially attenuated in our
Education, Science and Culture (No. 05836038 and No. 06044238).

scheme. Strictly speaking, the total energy in the implicit
particle simulation plasma is not conserved, since the arti-
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